APPENDIX

While this article describes a process of converting an
integer n (rank) into a sequence of numbers (a lottery
ticket), the reverse, going from ticket fo rank, can be
done in a similar manner. To make the tickets look
“random” and not appear in sequential order, first run
the ticket rank through a pseudo-random mapping to
get a “random” ticket rank and only then apply the
conversion fo an actual ticket.

One example of such a random mapping is to do
prime multiplication of the ticket number modulo the
ticket space. To be more explicit, let N be the fotal
ticket space and A be a randomly selected prime
number smaller than N. A_mod N maps x to another
number less than N, and this mapping is oneto-one.
This defines a permutation, and given a random
prime, A, can produce seemingly random numbers
that look sufficiently different to a typical buyer.

As an example, consider a ticket space of 10 with

the prime number 7. A random constant also can be
added to the mapping to provide a random shift of the
numbers as well,which avoids having O always map
to O.

x |0|1|2|3|4]|5|6|7|8]|9

7x
mod| O | 7 | 4|1 (8|52]|9]6]|3
10

A lottery ticket consists of five integers from 1 to 69
(white balls) and a sixth integer ranging from 1 to 26
(the powerball). In this case, n must be at least O and
less than 292,201,338. We first consider generating
just the white balls in the range from O to 68 (simply
add 1 to each ball in the end).

Our approach is fo generate each number
sequentially, keeping track of a lower bound to ensure
a strictly increasing order. Let GenTicket (n,1,s)
be a function where n is the rank in question, 1 is

a lower bound for the numbers we are allowed to
use, and outputs a sequence of s integers in strictly
increasing order with values at least 0 and less than
h (globally provided). To generate the white balls,
call GenTicket(n,0,5), where n is the rank and
h is globally provided as 69. Define GenTicket as
follows in Python, where Binom(n, k) counts the
number of combinations to choose k from n objects:

global h # upper bound of ticket numbers
def GenTicket(n,1l,s):

if s ==
return [n + 1]
else:
i=1
while n >= Binom(h - 1 - i, s - 1):
n -= Binom(h - 1 - i, s - 1)
i+=1
return [1 + i - 1] + GenTicket(n, 1 + i,

s - 1)

Intuitively, we use Binom to determine how many
tickets there are starting with the given lower bound,
and continuously reduce the ticket space until we know
the range in which the first number should lie. Then,
we can compute the rest of the ficket recursively.

For the remaining powerball, simply divide the
integer n by the total number of possible white balls
(11,238,513 for Powerball) to get the powerball
number. As long as n is within the possible number of
tickets, this will compute the appropriate “level” in the
ticket space.

The first (n = 0) ticket would be (1,2,3,4,5,1)

and the last (n = 292,201,337) ticket would be
(65,66,67,68,69,26). The computation to find the
100,000,000th ticket can be used as an example.
We generate this ticket with O-based indexing, so
at the end, we increase each value by 1 to get the
standard ticket values.

First divide n = 100,000,000 by 11,238,513 to

get the powerball number, which is 8. Now, find the
remainder of n when divided by 11,238,513 to get
10,091,896, which represents the rank for computing
the values of the white balls. The steps of the process
to show how intermediate values are determined are
as follows.

Starting point:

4 4 I 4

n: 10091896,

(2, 2, 2, 2, 2, 8)
lower bound: 0, size: 5

Check whether O can be the first number. The number
of possible tickets with O as the first number is (ig).
However, since 10,091,896 > (648), we know that the
first number cannot be 0. Thus, we reduce n to get n

=10,091,896 - () =9,277,511.

We can rule out 1 as the first number because
9,277,511 > (37) =8,511,031. Thus, again reduce
togetn=9,277,511 - (%) = 8,511,031. Repeat
this for a total of 24 iterations until finally getting

that 75,142 < (‘24). Thus, our ticket lies in this set of
possible tickets, and our first number must be 24.

Simply repeat this process recursively to generate all
the other numbers, which is summarized as:

(24, 2, 2, 2, 2, 8)

n: 75142, lower bound: 25, size: 4

Since we have used 24, our new lower bound
is 25.

Our new size is 4 since we only have 4 more
to fill now.

62801 = 75142 - Binom(43,3)

...total 7 iterations...

5436 < Binom(36,3)

Thus, add 7 more to the new lower bound.

APPENDIX (CONTINUED)

(24, 32, 2, 2, 2, 8)

n: 5436, 1l: 33, size: 3
4841 = 5436 - Binom(35,2)
... total 13 iterations ...
67 < Binom(22,2)

(24, 32, 46, 2, 2, 8)
n: 67, l: 47, size: 2
46 = 67 - Binom(21,1)
26 = 46 - Binom(20,1)
7 < Binom(19,1)

(24, 32, 46, 50, ?, 8)

n: 7, low: 51, size:

1

Since size = 1, we can return low + n.

Final result
(24, 32, 46, 50, 58,

8)

In the end, increment each value by 1 to have every

value start at 1, and the 100,000,000th ticket is (25,

33, 47, 51, 59, 9).

