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While this article describes a process of converting an 
integer n (rank) into a sequence of numbers (a lottery 
ticket), the reverse, going from ticket to rank, can be 
done in a similar manner. To make the tickets look 
“random” and not appear in sequential order, first run 
the ticket rank through a pseudo-random mapping to 
get a “random” ticket rank and only then apply the 
conversion to an actual ticket. 

One example of such a random mapping is to do 
prime multiplication of the ticket number modulo the 
ticket space. To be more explicit, let N be the total 
ticket space and A be a randomly selected prime 
number smaller than N. Ax mod N maps x to another 
number less than N, and this mapping is one-to-one. 
This defines a permutation, and given a random 
prime, A, can produce seemingly random numbers 
that look sufficiently different to a typical buyer. 

As an example, consider a ticket space of 10 with 
the prime number 7. A random constant also can be 
added to the mapping to provide a random shift of the 
numbers as well,which avoids having 0 always map 
to 0.

x 0 1 2 3 4 5 6 7 8 9

7x 
mod 
10

0 7 4 1 8 5 2 9 6 3

A lottery ticket consists of five integers from 1 to 69 
(white balls) and a sixth integer ranging from 1 to 26 
(the powerball). In this case, n must be at least 0 and 
less than 292,201,338. We first consider generating 
just the white balls in the range from 0 to 68 (simply 
add 1 to each ball in the end). 

Our approach is to generate each number 
sequentially, keeping track of a lower bound to ensure 
a strictly increasing order. Let GenTicket(n,l,s) 
be a function where n is the rank in question, l is 
a lower bound for the numbers we are allowed to 
use, and outputs a sequence of s integers in strictly 
increasing order with values at least 0 and less than 
h (globally provided). To generate the white balls, 
call GenTicket(n,0,5), where n is the rank and 
h is globally provided as 69. Define GenTicket as 
follows in Python, where Binom(n,k) counts the 
number of combinations to choose k from n objects:

global h # upper bound of ticket numbers 
def GenTicket(n,l,s): 
  if s == 1: 
    return [n + l] 
  else: 
    i = 1 
    while n >= Binom(h - l - i, s - 1): 
      n -= Binom(h - l - i, s - 1) 
      i += 1 
    return [l + i - 1] + GenTicket(n, l + i, 
    s - 1)

Intuitively, we use Binom to determine how many 
tickets there are starting with the given lower bound, 
and continuously reduce the ticket space until we know 
the range in which the first number should lie. Then, 
we can compute the rest of the ticket recursively.

For the remaining powerball, simply divide the 
integer n by the total number of possible white balls 
(11,238,513 for Powerball) to get the powerball 
number. As long as n is within the possible number of 
tickets, this will compute the appropriate “level” in the 
ticket space.

The first (n = 0) ticket would be (1,2,3,4,5,1) 
and the last (n = 292,201,337) ticket would be 
(65,66,67,68,69,26). The computation to find the 
100,000,000th ticket can be used as an example. 
We generate this ticket with 0-based indexing, so 
at the end, we increase each value by 1 to get the 
standard ticket values.

First divide n = 100,000,000 by 11,238,513 to 
get the powerball number, which is 8. Now, find the 
remainder of n when divided by 11,238,513 to get 
10,091,896, which represents the rank for computing 
the values of the white balls. The steps of the process 
to show how intermediate values are determined are 
as follows.

Starting point:

(?, ?, ?, ?, ?, 8) 
n: 10091896, lower bound: 0, size: 5

Check whether 0 can be the first number. The number 
of possible tickets with 0 as the first number is (   ). 
However, since 10,091,896  (   ), we know that the 
first number cannot be 0. Thus, we reduce n to get n 
=10,091,896 − (   ) =9,277,511.

We can rule out 1 as the first number because 
9,277,511  (   ) = 8,511,031. Thus, again reduce 
to get n = 9,277,511 − (   ) = 8,511,031. Repeat 
this for a total of 24 iterations until finally getting 
that 75,142  (   ). Thus, our ticket lies in this set of 
possible tickets, and our first number must be 24.

Simply repeat this process recursively to generate all 
the other numbers, which is summarized as:

(24, ?, ?, ?, ?, 8) 
n: 75142, lower bound: 25, size: 4 
Since we have used 24, our new lower bound 
is 25. 
Our new size is 4 since we only have 4 more 
to fill now. 
62801 = 75142 - Binom(43,3) 
...total 7 iterations... 
5436  Binom(36,3) 
Thus, add 7 more to the new lower bound.
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$1.02 billion, but as the jackpot grows larger and 
larger, the expected number of tickets to be sold grows 
quadratically, and hence, the number of collisions 
overwhelms the returns of the jackpot. It becomes 
more and more likely that the prize will have to be 
shared among more people.

Under our proposed scheme, the range of the jack-
pot with positive expected returns would be larger—
between $584 million and $1.79 billion. As the pool 
size continues to increase, the expected value con-
verges toward the standard Quick Pick method, but 
the expected value of our scheme is always larger than 
that of the standard Quick Pick method, providing 
greater incentives for smart customers.

Conclusion
We propose an alternative to the standard ticket 
generation scheme used in popular lotteries; one that 
generally minimizes collisions and raises the expected 
value of a ticket. Our deterministic pairing method 
only requires an agreed setup between the lottery asso-
ciate and its distributors. No further communication 
is required during sales. Future work could involve 
adding some degree of communication to establish 
how much more this method can be improved upon. 
Analyzing the impact of non-uniform ticket sales 
among stores (some more popular than others) is 
another factor to consider.

What is the catch with our ticket generation pro-
cedure? How can we really increase expected value 
by affecting sales strategy, without any change in the 
cost of the lottery pool? Over the course of any single 
lottery, it is clear that we accomplish our goals, but 
there are certain subtleties in running a sequence of 
lotteries, where the pools increase whenever there is no 
winner the previous week. Reducing duplicate entries 
increases the likelihood that the prize will be claimed 
each week. Over a sequence of lotteries, our scheme 
will create fewer large pools resulting from long runs 
of unsuccessful contests. But no one likes to share, and 
a lucky winner would be more likely to keep the entire 
pool under our scheme if they cash in.  

Further Reading
Barboianu, C. 2009. The mathematics of lottery: odds, 

combinations, systems. Lightning Source.
Flajolet, P., and Odlyzko, A.M. 1989. Random mapping 

statistics. New York, NY: SpringerLink.
Füredi, Z., Székely, G. J., and Zubor, Z. 1996. On the lot-

tery problem. Journal of Combinatorial Designs 4, 5–10.
Jackpot History. 2019.
Keneally, M. 2016. How to Pick Your Powerball Lot-

tery Numbers. ABC News.
Knuth, D.E. 1997. The Art of Computer Programming, 

Volume 2 (3rd Ed.): Seminumerical Algorithms. Boston, 
MA: Addison-Wesley Longman Publishing Co., Inc.

Lim, V., Deahl, E., Rubel, L., and Williams, S. 2015. 
Local Lotto. Hershey, PA: IGI Global.

Lim, V., Rubel, L., Shookhoff, L., Sullivan, M., and 
Williams, S. 2016. The Lottery Is a Mathemat-
ics Powerball. Mathematics Teaching in the Middle 
School, 21, 526-532.

Rocheleau, M. 2016. More than half of Powerball tick-
ets sold this time will be duplicates. Boston Globe.

Wells, N. 2016. It’s not a good idea to buy Quick Pick. 
CNBC.

(24, 32, ?, ?, ?, 8) 
n: 5436, l: 33, size: 3 
4841 = 5436 - Binom(35,2) 
... total 13 iterations ... 
67  Binom(22,2)

(24, 32, 46, ?, ?, 8) 
n: 67, l: 47, size: 2 
46 = 67 - Binom(21,1) 
26 = 46 - Binom(20,1) 
7  Binom(19,1)

(24, 32, 46, 50, ?, 8) 
n: 7, low: 51, size: 1 
Since size = 1, we can return low + n.

Final result 
(24, 32, 46, 50, 58, 8)

In the end, increment each value by 1 to have every 
value start at 1, and the 100,000,000th ticket is (25, 
33, 47, 51, 59, 9).
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