
VOL. 33.1, 2020

36

While this article describes a process of converting an
integer n (rank) into a sequence of numbers (a lottery
ticket), the reverse, going from ticket to rank, can be
done in a similar manner. To make the tickets look
“random” and not appear in sequential order, first run
the ticket rank through a pseudo-random mapping to
get a “random” ticket rank and only then apply the
conversion to an actual ticket.

One example of such a random mapping is to do
prime multiplication of the ticket number modulo the
ticket space. To be more explicit, let N be the total
ticket space and A be a randomly selected prime
number smaller than N. Ax mod N maps x to another
number less than N, and this mapping is one-to-one.
This defines a permutation, and given a random
prime, A, can produce seemingly random numbers
that look sufficiently different to a typical buyer.

As an example, consider a ticket space of 10 with
the prime number 7. A random constant also can be
added to the mapping to provide a random shift of the
numbers as well,which avoids having 0 always map
to 0.

x 0 1 2 3 4 5 6 7 8 9

7x
mod
10

0 7 4 1 8 5 2 9 6 3

A lottery ticket consists of five integers from 1 to 69
(white balls) and a sixth integer ranging from 1 to 26
(the powerball). In this case, n must be at least 0 and
less than 292,201,338. We first consider generating
just the white balls in the range from 0 to 68 (simply
add 1 to each ball in the end).

Our approach is to generate each number
sequentially, keeping track of a lower bound to ensure
a strictly increasing order. Let GenTicket(n,l,s)
be a function where n is the rank in question, l is
a lower bound for the numbers we are allowed to
use, and outputs a sequence of s integers in strictly
increasing order with values at least 0 and less than
h (globally provided). To generate the white balls,
call GenTicket(n,0,5), where n is the rank and
h is globally provided as 69. Define GenTicket as
follows in Python, where Binom(n,k) counts the
number of combinations to choose k from n objects:

global h # upper bound of ticket numbers
def GenTicket(n,l,s):
 if s == 1:
 return [n + l]
 else:
 i = 1
 while n >= Binom(h - l - i, s - 1):
 n -= Binom(h - l - i, s - 1)
 i += 1
 return [l + i - 1] + GenTicket(n, l + i,
 s - 1)

Intuitively, we use Binom to determine how many
tickets there are starting with the given lower bound,
and continuously reduce the ticket space until we know
the range in which the first number should lie. Then,
we can compute the rest of the ticket recursively.

For the remaining powerball, simply divide the
integer n by the total number of possible white balls
(11,238,513 for Powerball) to get the powerball
number. As long as n is within the possible number of
tickets, this will compute the appropriate “level” in the
ticket space.

The first (n = 0) ticket would be (1,2,3,4,5,1)
and the last (n = 292,201,337) ticket would be
(65,66,67,68,69,26). The computation to find the
100,000,000th ticket can be used as an example.
We generate this ticket with 0-based indexing, so
at the end, we increase each value by 1 to get the
standard ticket values.

First divide n = 100,000,000 by 11,238,513 to
get the powerball number, which is 8. Now, find the
remainder of n when divided by 11,238,513 to get
10,091,896, which represents the rank for computing
the values of the white balls. The steps of the process
to show how intermediate values are determined are
as follows.

Starting point:

(?, ?, ?, ?, ?, 8)
n: 10091896, lower bound: 0, size: 5

Check whether 0 can be the first number. The number
of possible tickets with 0 as the first number is ().
However, since 10,091,896  (), we know that the
first number cannot be 0. Thus, we reduce n to get n
=10,091,896 − () =9,277,511.

We can rule out 1 as the first number because
9,277,511  () = 8,511,031. Thus, again reduce
to get n = 9,277,511 − () = 8,511,031. Repeat
this for a total of 24 iterations until finally getting
that 75,142  (). Thus, our ticket lies in this set of
possible tickets, and our first number must be 24.

Simply repeat this process recursively to generate all
the other numbers, which is summarized as:

(24, ?, ?, ?, ?, 8)
n: 75142, lower bound: 25, size: 4
Since we have used 24, our new lower bound
is 25.
Our new size is 4 since we only have 4 more
to fill now.
62801 = 75142 - Binom(43,3)
...total 7 iterations...
5436  Binom(36,3)
Thus, add 7 more to the new lower bound.

APPENDIX

68
4

68
4

68
4

67
4

67
4

44
4

CHANCE

37

About the Authors
Allen Kim is a computer science PhD student at Stony Brook University. He
received his BS with a computer science major and minors in mathematics and
physics from Macaulay Honors College at the City College of New York. He has
interests in a wide range of topics, from algorithms to artificial intelligence and
cryptography. He enjoys creative puzzles and problem-solving and has experience
in competitive programming, ICPC, and mathematics.

Steven Skiena is the Distinguished Teaching Professor of Computer
Science and director of the Institute for AI-Driven Discovery and Innovation at Stony
Brook University. His research interests include data science, bioinformatics, and
algorithms. He is the author of six books, including The Algorithm Design Manual,
The Data Science Design Manual, Calculated Bets, and Who’s Bigger: Where
Historical Figures Really Rank, and more than 150 technical papers. He received
his PhD in computer science from the University of Illinois in 1988. He is a Fellow of
the American Association for the Advancement of Science (AAAS), former Fulbright
scholar, and recipient of the ONR Young Investigator Award and the IEEE Computer
Science and Engineer Teaching Award.

$1.02 billion, but as the jackpot grows larger and
larger, the expected number of tickets to be sold grows
quadratically, and hence, the number of collisions
overwhelms the returns of the jackpot. It becomes
more and more likely that the prize will have to be
shared among more people.

Under our proposed scheme, the range of the jack-
pot with positive expected returns would be larger—
between $584 million and $1.79 billion. As the pool
size continues to increase, the expected value con-
verges toward the standard Quick Pick method, but
the expected value of our scheme is always larger than
that of the standard Quick Pick method, providing
greater incentives for smart customers.

Conclusion
We propose an alternative to the standard ticket
generation scheme used in popular lotteries; one that
generally minimizes collisions and raises the expected
value of a ticket. Our deterministic pairing method
only requires an agreed setup between the lottery asso-
ciate and its distributors. No further communication
is required during sales. Future work could involve
adding some degree of communication to establish
how much more this method can be improved upon.
Analyzing the impact of non-uniform ticket sales
among stores (some more popular than others) is
another factor to consider.

What is the catch with our ticket generation pro-
cedure? How can we really increase expected value
by affecting sales strategy, without any change in the
cost of the lottery pool? Over the course of any single
lottery, it is clear that we accomplish our goals, but
there are certain subtleties in running a sequence of
lotteries, where the pools increase whenever there is no
winner the previous week. Reducing duplicate entries
increases the likelihood that the prize will be claimed
each week. Over a sequence of lotteries, our scheme
will create fewer large pools resulting from long runs
of unsuccessful contests. But no one likes to share, and
a lucky winner would be more likely to keep the entire
pool under our scheme if they cash in.

Further Reading
Barboianu, C. 2009. The mathematics of lottery: odds,

combinations, systems. Lightning Source.
Flajolet, P., and Odlyzko, A.M. 1989. Random mapping

statistics. New York, NY: SpringerLink.
Füredi, Z., Székely, G. J., and Zubor, Z. 1996. On the lot-

tery problem. Journal of Combinatorial Designs 4, 5–10.
Jackpot History. 2019.
Keneally, M. 2016. How to Pick Your Powerball Lot-

tery Numbers. ABC News.
Knuth, D.E. 1997. The Art of Computer Programming,

Volume 2 (3rd Ed.): Seminumerical Algorithms. Boston,
MA: Addison-Wesley Longman Publishing Co., Inc.

Lim, V., Deahl, E., Rubel, L., and Williams, S. 2015.
Local Lotto. Hershey, PA: IGI Global.

Lim, V., Rubel, L., Shookhoff, L., Sullivan, M., and
Williams, S. 2016. The Lottery Is a Mathemat-
ics Powerball. Mathematics Teaching in the Middle
School, 21, 526-532.

Rocheleau, M. 2016. More than half of Powerball tick-
ets sold this time will be duplicates. Boston Globe.

Wells, N. 2016. It’s not a good idea to buy Quick Pick.
CNBC.

(24, 32, ?, ?, ?, 8)
n: 5436, l: 33, size: 3
4841 = 5436 - Binom(35,2)
... total 13 iterations ...
67  Binom(22,2)

(24, 32, 46, ?, ?, 8)
n: 67, l: 47, size: 2
46 = 67 - Binom(21,1)
26 = 46 - Binom(20,1)
7  Binom(19,1)

(24, 32, 46, 50, ?, 8)
n: 7, low: 51, size: 1
Since size = 1, we can return low + n.

Final result
(24, 32, 46, 50, 58, 8)

In the end, increment each value by 1 to have every
value start at 1, and the 100,000,000th ticket is (25,
33, 47, 51, 59, 9).

APPENDIX (CONTINUED)

